Skip to main content

VibeRepair Analytics

The VibeRepair system provides buffering analytics and pattern tracking for the ContinuousAudioStreamer, focusing on essential pattern recognition to optimize audio streaming performance and user experience.

Architecture Overview

The VibeRepair system operates as a lightweight analytics layer that tracks streaming patterns and provides insights for optimization:

Core Components

VibestreamRepair Class

The main analytics class tracks buffering patterns with enhanced metrics:
export class VibestreamRepair {
  private currentSession: Partial<BufferingPattern> = {};
  private patterns: BufferingPattern[] = [];

  constructor() {
    this.loadPatternsFromStorage();
  }
}

BufferingPattern Interface

The system tracks comprehensive buffering metrics:
interface BufferingPattern {
  rtaId: string;
  chunkFailures: number[];
  sessionDuration: number;
  userBehavior: 'seeking' | 'continuous' | 'interrupted';
  timestamp: number;
  totalChunks: number;
  completedChunks: number;
  bufferUnderflows: number;
  networkQuality: 'excellent' | 'good' | 'poor';
}

Session Management

Session Initialization

Each streaming session is tracked with comprehensive metadata:
startSession(rtaId: string, totalChunks: number = 0) {
  this.currentSession = {
    rtaId,
    chunkFailures: [],
    timestamp: Date.now(),
    userBehavior: 'continuous',
    totalChunks,
    completedChunks: 0,
    bufferUnderflows: 0,
    networkQuality: 'excellent'
  };
  console.log(`📊 Started analytics session for ${rtaId} (${totalChunks} chunks)`);
}

Session Lifecycle

The system tracks the complete session lifecycle:

Metric Collection

Chunk Failure Tracking

The system records specific chunk indices that fail during streaming:
recordChunkFailure(chunkIndex: number) {
  if (!this.currentSession.chunkFailures) this.currentSession.chunkFailures = [];
  this.currentSession.chunkFailures.push(chunkIndex);
}

User Behavior Analysis

Different user interaction patterns are tracked:
recordSeeking() {
  if (this.currentSession) {
    this.currentSession.userBehavior = 'seeking';
  }
}

Performance Metrics

The system tracks completion rates and buffer health:
recordChunkCompletion() {
  if (this.currentSession.completedChunks !== undefined) {
    this.currentSession.completedChunks++;
  }
}

recordBufferUnderflow() {
  if (this.currentSession.bufferUnderflows !== undefined) {
    this.currentSession.bufferUnderflows++;
  }
}

Network Quality Assessment

Network conditions are continuously monitored:
updateNetworkQuality(quality: 'excellent' | 'good' | 'poor') {
  if (this.currentSession) {
    this.currentSession.networkQuality = quality;
  }
}

Pattern Storage

Local Storage Implementation

The system uses platform-specific storage for pattern persistence:
private loadPatternsFromStorage() {
  try {
    if (Platform.OS === 'web') {
      const stored = localStorage.getItem('vibesflow_buffering_patterns');
      if (stored) {
        this.patterns = JSON.parse(stored);
      }
    }
  } catch (error) {
    console.warn('⚠️ Failed to load buffering patterns:', error);
  }
}

Pattern Persistence

Patterns are saved with memory management to prevent storage bloat:
private savePatternsToStorage() {
  try {
    if (Platform.OS === 'web') {
      // Keep only last 20 patterns to prevent memory bloat
      const patternsToStore = this.patterns.slice(-20);
      localStorage.setItem('vibesflow_buffering_patterns', JSON.stringify(patternsToStore));
    }
  } catch (error) {
    console.warn('⚠️ Failed to save buffering patterns:', error);
  }
}

Session Finalization

Pattern Generation

When a session ends, comprehensive patterns are generated:
endSession() {
  if (!this.currentSession.rtaId) return;

  const pattern: BufferingPattern = {
    rtaId: this.currentSession.rtaId,
    chunkFailures: this.currentSession.chunkFailures || [],
    sessionDuration: Date.now() - (this.currentSession.timestamp || Date.now()),
    userBehavior: this.currentSession.userBehavior || 'continuous',
    timestamp: this.currentSession.timestamp || Date.now(),
    totalChunks: this.currentSession.totalChunks || 0,
    completedChunks: this.currentSession.completedChunks || 0,
    bufferUnderflows: this.currentSession.bufferUnderflows || 0,
    networkQuality: this.currentSession.networkQuality || 'excellent'
  };

  this.patterns.push(pattern);
  this.savePatternsToStorage();
  
  // Reset session
  this.currentSession = {};
}

Integration with Audio Streaming

ContinuousAudioStreamer Integration

The VibeRepair system integrates with the audio streaming pipeline:

Performance Optimization

Memory Management

The system implements efficient memory management:
  • Pattern Limit: Only stores the last 20 patterns
  • Session Reset: Clears session data after each completion
  • Error Handling: Graceful fallback for storage failures

Platform Compatibility

The system supports multiple platforms through React Native’s Platform API:
import { Platform } from 'react-native';

// Platform-specific storage implementation
if (Platform.OS === 'web') {
  // Use localStorage for web
} else {
  // Use AsyncStorage for mobile (if implemented)
}

Analytics Insights

Pattern Analysis

The stored patterns can be analyzed to identify:
  1. Failure Hotspots: Specific chunk indices that consistently fail
  2. Network Correlations: Relationship between network quality and performance
  3. User Behavior Impact: How seeking affects buffering performance
  4. Session Duration Patterns: Optimal session lengths for different scenarios

Optimization Recommendations

Based on collected patterns, the system can inform:
  • Buffer Size Adjustments: Optimal buffer sizes for different network conditions
  • Prefetch Strategies: Which chunks to prioritize based on failure patterns
  • User Experience: When to show loading indicators or quality warnings

Error Handling

Graceful Degradation

The system handles errors without affecting audio playback:
try {
  // Analytics operations
} catch (error) {
  console.warn('⚠️ Analytics operation failed:', error);
  // Continue without analytics
}

Storage Fallbacks

If storage operations fail, the system continues operation:
private savePatternsToStorage() {
  try {
    // Storage operation
  } catch (error) {
    console.warn('⚠️ Failed to save buffering patterns:', error);
    // Analytics continues in memory only
  }
}

Configuration

Default Settings

The system operates with sensible defaults:
  • Maximum Stored Patterns: 20
  • Default Network Quality: ‘excellent’
  • Default User Behavior: ‘continuous’

Customization

The system can be extended for additional metrics:
// Example extension for custom metrics
interface ExtendedBufferingPattern extends BufferingPattern {
  deviceType: string;
  connectionType: string;
  audioQuality: number;
}

Future Enhancements

The VibeRepair system is designed for extensibility:
  1. Machine Learning: Pattern recognition for predictive optimization
  2. Real-time Adaptation: Dynamic buffer adjustments based on patterns
  3. Cross-session Learning: Learning from historical patterns across users
  4. Advanced Analytics: More sophisticated failure prediction algorithms